Appraising freeze-drying for storage of bacteria and their ready access in a rapid toxicity assessment assay

Abstract

Direct toxicity assessment (DTA) techniques seek to measure the impact of toxic chemicals on biological materials resident in the environment. This study features the use of freeze-dried bacterial cells in combination with a rapid DTA analyser, SciTOX™. The effects of three factors—cryoprotectant type, bacterial strain, and storage temperature— were tested in order to validate the shelf life of the freeze-dried cells. Three freeze-dried Gram-negative bacterial strains, Acinetobacter calcoaceticus, Escherichia coli and Pseudomonas putida, were tested by using the bacteria in the SciTox™ DTA assay and recording their responses to two standard toxicants: 2,4-dicholorophenol and 3,5- dichlorophenol. Each freeze-dried strain of bacteria was prepared in two forms—either pre-treatment with polyethylene glycol (PEG) or with sucrose/Tween 80—prior to storing at either 4 or −20 °C for three different storage periods (1, 2 or 3 months). While the sucrose/Tween 80 pre-treated freeze-dried cells exhibited better cell viability, we concluded that PEG was a more suitable cryoprotectant for the bacteria used in the DTA assay because of EC50 parity with fresh cell and zero-time freeze-dried cell assays. The results showed that freeze-dried cells, with appropriate materials and conditions, can give reproducible DTA results for up to 3 months. The availability of a biocomponent that can be activated by simple rehydration makes the deployment of this technology much easier for an end user

    Similar works

    Full text

    thumbnail-image