On the Exploitation of CubeSats for Highly Accurate and Robust Single-Pass SAR Interferometry

Abstract

Highly accurate digital elevation models (DEMs) from spaceborne synthetic aperture radar (SAR) interferometry are often affected by phase unwrapping errors. These errors can be resolved by the use of additional interferograms with different baselines, but this requires additional satellites in a single-pass configuration, resulting in higher cost and system complexity, or additional passes of the satellites, which affects mission planning and makes the system less suitable for monitoring fast-changing phenomena. This work proposes augmenting a bistatic SAR interferometer with one or more receive-only CubeSats, whose images are used to form an additional interferogram with a small baseline, making the system robust to unwrapping errors. In spite of the lower quality of the CubeSat images due to their small antenna aperture, this additional information can be used to detect and resolve phase unwrapping errors in the DEM without impacting its resolution or accuracy. A processing scheme for the phase unwrapping correction is presented along with a theoretical model for its performance. Finally, a design example is presented and discussed along with a simulation based on TanDEM-X data. It is also shown that CubeSat add-ons allow further increasing the baseline and thus improving the accuracy of DEMs. This concept represents a cost-effective solution for the generation of highly accurate, robust DEMs and paves the way to distributed SAR interferometric concepts based on CubeSats

    Similar works