Separation in Biorefineries by Liquid Phase Adsorption: Itaconic Acid as Case Study

Abstract

In biorefinery processes often the downstream processing is the technological bottleneck for an overall high efficiency. On the basis of recent developments, the selective liquid phase adsorption applying highly hydrophobic porous materials opened up new opportunities for process development. In this contribution, the efficiency of selective liquid phase adsorption is demonstrated for the separation and purification of itaconic acid from aqueous solutions for the first time. A wide range of different adsorbents was screened, revealing the surface polarity as well as textural properties as critical parameters for their performance. Adsorption from mixed solutions of itaconic acid and glucose exhibited extraordinary high selectivities for adsorbents with highly hydrophobic surfaces, especially certain activated carbons and hyper-cross-linked polymers. Evaluation of the pH dependence showed that the respective molecular species of itaconic acid/itaconate has a major impact on the adsorption performance. Additionally, experiments on a continuously operated fixed-bed adsorber were carried out, and the desorption behavior was evaluated. Overall, the technical feasibility of the selective adsorptive removal of itaconic acid from aqueous solutions with hydrophobic adsorbents is demonstrated as a model system for an alternative technology to conventional separation strategies in biorefinery concepts

    Similar works