Abstract

BackgroundHabitual alcohol use can be an indicator of alcohol dependence, which is associated with a wide range of serious health problems.MethodsWe completed a genome-wide association study in 126,936 European American and 17,029 African American subjects in the Veterans Affairs Million Veteran Program for a quantitative phenotype based on maximum habitual alcohol consumption.ResultsADH1B, on chromosome 4, was the lead locus for both populations: for the European American sample, rs1229984 (p = 4.9 × 10-47); for African American, rs2066702 (p = 2.3 × 10-12). In the European American sample, we identified three additional genome-wide-significant maximum habitual alcohol consumption loci: on chromosome 17, rs77804065 (p = 1.5 × 10-12), at CRHR1 (corticotropin-releasing hormone receptor 1); the protein product of this gene is involved in stress and immune responses; and on chromosomes 8 and 10. European American and African American samples were then meta-analyzed; the associated region at CRHR1 increased in significance to 1.02 × 10-13, and we identified two additional genome-wide significant loci, FGF14 (p = 9.86 × 10-9) (chromosome 13) and a locus on chromosome 11. Besides ADH1B, none of the five loci have prior genome-wide significant support. Post-genome-wide association study analysis identified genetic correlation to other alcohol-related traits, smoking-related traits, and many others. Replications were observed in UK Biobank data. Genetic correlation between maximum habitual alcohol consumption and alcohol dependence was 0.87 (p = 4.78 × 10-9). Enrichment for cell types included dopaminergic and gamma-aminobutyric acidergic neurons in midbrain, and pancreatic delta cells.ConclusionsThe present study supports five novel alcohol-use risk loci, with particularly strong statistical support for CRHR1. Additionally, we provide novel insight regarding the biology of harmful alcohol use

    Similar works