BackgroundDue to practical challenges associated with genetic sequencing in low-resource environments, the burden of hepatitis C virus (HCV) in forcibly displaced people is understudied. We examined the use of field applicable HCV sequencing methods and phylogenetic analysis to determine HCV transmission dynamics in internally displaced people who inject drugs (IDPWID) in Ukraine.MethodsIn this cross-sectional study, we used modified respondent-driven sampling to recruit IDPWID who were displaced to Odesa, Ukraine, before 2020. We generated partial and near full length genome (NFLG) HCV sequences using Oxford Nanopore Technology (ONT) MinION in a simulated field environment. Maximum likelihood and Bayesian methods were used to establish phylodynamic relationships.ResultsBetween June and September 2020, we collected epidemiological data and whole blood samples from 164 IDPWID (PNAS Nexus.2023;2(3):pgad008). Rapid testing (Wondfo® One Step HCV; Wondfo® One Step HIV1/2) identified an anti-HCV seroprevalence of 67.7%, and 31.1% of participants tested positive for both anti-HCV and HIV. We generated 57 partial or NFLG HCV sequences and identified eight transmission clusters, of which at least two originated within a year and a half post-displacement.ConclusionsLocally generated genomic data and phylogenetic analysis in rapidly changing low-resource environments, such as those faced by forcibly displaced people, can help inform effective public health strategies. For example, evidence of HCV transmission clusters originating soon after displacement highlights the importance of implementing urgent preventive interventions in ongoing situations of forced displacement