CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Predictive influence of unavailable values of future explanatory variables in a linear model
Authors
SK Bhattacharjee
SR Jammalamadaka
M Sabiruzzaman
A Shamiri
Publication date
15 December 2011
Publisher
eScholarship, University of California
Abstract
We consider an approach to prediction in linear model when values of the future explanatory variables are unavailable, we predict a future response y f at a future sample point x f when some components of x f are unavailable. We consider both the cases where x f are dependent and independent but normally distributed. A Taylor expansion is used to derive an approximation to the predictive density, and the influence of missing future explanatory variables (the loss or discrepancy) is assessed using the Kullback-Leibler measure of divergence. This discrepancy is compared in different scenarios including the situation where the missing variables are dropped entirely. © 2011 Copyright Taylor and Francis Group, LLC
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021