Do we perceive a flattened world on the monitor screen

Abstract

The current model of three-dimensional perception hypothesizes that the brain integrates the depth cues in a statistically optimal fashion through a weighted linear combination with weights proportional to the reliabilities obtained for each cue in isolation (Landy, Maloney, Johnston, & Young, 1995). Even though many investigations support such theoretical framework, some recent empirical findings are at odds with this view (e.g., Domini, Caudek, & Tassinari, 2006). Failures of linear cue integration have been attributed to cue-conflict and to unmodelled cues to flatness present in computer-generated displays. We describe two cue-combination experiments designed to test the integration of stereo and motion cues, in the presence of consistent or conflicting blur and accommodation information (i.e., when flatness cues are either absent, with physical stimuli, or present, with computer-generated displays). In both conditions, we replicated the results of Domini et al. (2006): The amount of perceived depth increased as more cues were available, also producing an over-estimation of depth in some conditions. These results can be explained by the Intrinsic Constraint model, but not by linear cue combination

    Similar works