research

Towards an understanding of thermodynamic and kinetic controls on the formation of clay minerals from volcanic glass under various environmental conditions

Abstract

lmogolite is the kinetically and thermodynamically favoured weathering product from rhyolitic volcanic glass in the soil-forming environment. However, on thermodynamic grounds imogolite would also appear to be the favoured alteration product of rhyolitic glass deposited in the nearshore marine environment. On the basis that the rate of conversion of glass to clay minerals is a function of the solubility of the clay mineral, smectite is expected to be formed under mildly diagenetic conditions, and formed more rapidly than imogolite in soil. The derived activation energies for formation of imogolite from glass in soils are appropriate for a diffusion controlled reaction, and appear consistent with the diffusion of the tetrahedrally co-ordinated species Al[iv](OH)₂(H2Q)⁺. In the marine environment, however the mechanism for all reactions appear to be surface reaction control

    Similar works