Fixed single-cell transcriptomic characterization of human radial glial diversity

Abstract

The human neocortex is created from diverse intermixed progenitors in the prenatal germinal zones. These progenitors have been difficult to characterize since progenitors—particularly radial glia (RG)—are rare, and are defined by a combination of intracellular markers, position and morphology. To circumvent these problems we developed a method called FRISCR for transcriptome profiling of individual fixed, stained and sorted cells. After validation of FRISCR using human embryonic stem cells, we profiled primary human RG that constitute only 1% of the mid-gestation cortex. These RG could be classified into ventricular zone-enriched RG (vRG) that express ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that express HOPX. Our study identifies the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks driving the lineage of human neocortical progenitors. Furthermore, FRISCR allows targeted single-cell transcriptomic profiling of tissues that lack live-cell markers

    Similar works