Fractional transformation-based decentralized robust control of a coupled-tank system for industrial applications

Abstract

Petrochemical and dairy industries, waste management, and paper manufacturing fall under the category of process industries where flow and liquid control are essential. Even when liquids are mixed or chemically treated in interconnected tanks, the fluid and flow should constantly be observed and controlled, especially when dealing with nonlinearity and imperfect plant models. In this study, we propose a nonlinear dynamic multiple-input multiple-output (MIMO) plant model. This model is then transformed through linearization, a technique frequently utilized in the analysis and modeling of fractional processes, and decoupling for decentralized fixed-structure H-infinity robust control design. Simulation tests based on MATLAB and SIMULINK are subsequently executed. Numerous assessments are conducted to evaluate tracking performance, external disturbance re jection, and plant parameter fluctuations to gauge the effectiveness of the proposed model. The objective of this work is to provide a framework that anticipates potential outcomes, paving the way for implementing a reliable controller synthesis for MIMO-connected tanks in real-world scenarios.This research was partially funded by FONDECYT grant number 1200525 (V.L.) from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT—Research Centre of Mathematics of University of Minho—within projects UIDB/00013/2020 and UIDP/00013/2020 (C.C.)

    Similar works