Right Neural Substrates of Language and Music Processing Left Out: Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modelling (MACM)

Abstract

Introduction: Language and music processing have been investigated in neuro-based research for over a century. However, consensus of independent and shared neural substrates among the domains remains elusive due to varying neuroimaging methodologies. Identifying functional connectivity in language and music processing via neuroimaging meta-analytic methods provides neuroscientific knowledge of higher cognitive domains and normative models may guide treatment development in communication disorders based on principles of neural plasticity. Methods: Using BrainMap software and tools, the present coordinate-based meta-analysis analyzed 65 fMRI studies investigating language and music processing in healthy adult subjects. We conducted activation likelihood estimates (ALE) in language processing, music processing, and language + music (Omnibus) processing. Omnibus ALE clusters were used to elucidate functional connectivity by use of meta-analytic connectivity modelling (MACM). Paradigm Class and Behavioral Domain analyses were completed for the ten identified nodes to aid functional MACM interpretation. Results: The Omnibus ALE revealed ten peak activation clusters (bilateral inferior frontal gyri, left medial frontal gyrus, right superior temporal gyrus, left transverse temporal gyrus, bilateral claustrum, left superior parietal lobule, right precentral gyrus, and right anterior culmen). MACM demonstrates an interconnected network consisting of unidirectional and bidirectional connectivity. Subsequent analyses demonstrated nodal involvement across 44 BrainMap paradigms and 32 BrainMap domains. Discussion: These findings demonstrate functional connectivity among Omnibus areas of activation in language and music processing. We analyze ALE and MACM outcomes by comparing them to previously observed roles in cognitive processing and functional network connectivity. Finally, we discuss the importance of translational neuroimaging and need for normative models guiding intervention

    Similar works