thesis

Designing Scalable Biological Interfaces

Abstract

This thesis presents the analysis and design of biological interfacing technologies in light of a need for radical improvements in scalability. It focuses primarily on structural and functional neural data acquisition, but also extends to other problems including genomic editing and nanoscale spatial control. Its main contributions include analysis of the physical limits of large-scale neural recording, experimental development of a screening platform for ion-dependent molecular recording devices, characterization of the design space for molecularly-annotated neural connectomics, and new designs for high-speed genome engineering and bio-nano-fabrication. Articulating governing principles and roadmaps for these domains has contributed to the initiation of multi-institutional projects that are strategically targeted towards scalability

    Similar works