On the biophysical mechanism of sensing upcoming earthquakes by animals

Abstract

It is documented that a few days or weeks before major Earthquakes (EQs) there are changes in animal behavior within distances up to 500 km from the seismic epicenter. At the same time Seismic Electric Signals (SES), geomagnetic and ionospheric perturbations, are detected within similar distances. SES consist of single unipolar pulses, and/or groups of such pulses called “SES activities” with an average frequency between successive pulses on the order of ~0.01 Hz and electric field intensity on the order of ~10−5–10−4 V/m (Frazer-Smith et al., 1990; Rikitake, 1998; Varotsos et al., 1993, 2011, 2019; Hayakawa et al., 2013; Grant et al., 2015). We show that the SES activities can be sensed by living organisms through the “Ion Forced-Oscillation Mechanism” for the action of Electromagnetic Fields (EMFs) on cells, according to which polarized EMFs can cause irregular gating of electro-sensitive ion channels on the cell membranes with consequent disruption of the cell electrochemical balance (Panagopoulos et al., 2000, 2002, 2015). This can be sensed by sensitive animals as discomfort in cases of weak and transient exposures, and may even lead to DNA damage and serious health implications in cases of intense exposure conditions (as in certain cases of man-made EMF exposures). Moreover, we show that the geomagnetic and ionospheric perturbations cannot be sensed through this mechanism. The same mechanism has explained meteoropathy, the sensing of upcoming thunderstorms by sensitive individuals, through the action of the EMFs of lightning discharges (Panagopoulos and Balmori, 2017). The present study shows that centuries-long anecdotal rumors of animals sensing intense upcoming EQs and displaying unusual behavior, lately documented by systematic studies, are now explained for the first time on the basis of the electromagnetic nature of all living organisms, and the electromagnetic signals emitted prior to EQs. © 2020 Elsevier B.V

    Similar works