Post-Quantum Authentication in TLS 1.3: A Performance Study

Abstract

The potential development of large-scale quantum computers is raising concerns among IT and security research professionals due to their ability to solve (elliptic curve) discrete logarithm and integer factorization problems in polynomial time. All currently used public key algorithms would be deemed insecure in a post-quantum (PQ) setting. In response, the National Institute of Standards and Technology (NIST) has initiated a process to standardize quantum-resistant crypto algorithms, focusing primarily on their security guarantees. Since PQ algorithms present significant differences over classical ones, their overall evaluation should not be performed out-of-context. This work presents a detailed performance evaluation of the NIST signature algorithm candidates and investigates the imposed latency on TLS 1.3 connection establishment under realistic network conditions. In addition, we investigate their impact on TLS session throughput and analyze the trade-off between lengthy PQ signatures and computationally heavy PQ cryptographic operations. Our results demonstrate that the adoption of at least two PQ signature algorithms would be viable with little additional overhead over current signature algorithms. Also, we argue that many NIST PQ candidates can effectively be used for less time-sensitive applications, and provide an in-depth discussion on the integration of PQ authentication in encrypted tunneling protocols, along with the related challenges, improvements, and alternatives. Finally, we propose and evaluate the combination of different PQ signature algorithms across the same certificate chain in TLS. Results show a reduction of the TLS handshake time and a significant increase of a server\u27s TLS tunnel connection rate over using a single PQ signature scheme

    Similar works