Quantum Implementation of AIM: Aiming for Low-Depth

Abstract

Security vulnerabilities in the symmetric-key primitives of a cipher can undermine the overall security claims of the cipher. With the rapid advancement of quantum computing in recent years, there is an increasing effort to evaluate the security of symmetric-key cryptography against potential quantum attacks. This paper focuses on analyzing the quantum attack resistance of AIM, a symmetric-key primitive used in the AIMer digital signature scheme. We presents the first quantum circuit implementation of AIM and estimates its complexity (such as qubit count, gate count, and circuit depth) with respect to Grover\u27s search algorithm. For Grover\u27s key search, the most important optimization metric is the depth, especially when considering parallel search. Our implementation gathers multiple methods for a low-depth quantum circuit of AIM in order to reduce the Toffoli depth and full depth

    Similar works