Privacy-Preserving Regular Expression Matching using Nondeterministic Finite Automata

Abstract

Motivated by the privacy requirements in network intrusion detection and DNS policy checking, we have developed a suite of protocols and algorithms for regular expression matching with enhanced privacy: - A new regular expression matching algorithm that is oblivious to the input strings, of which the complexity is only O(mn)O(mn) where mm and nn are the length of strings and the regular expression respectively. It is achieved by exploiting the structure of the Thompson nondeterministic automata. - A zero-knowledge proof of regular expression pattern matching in which a prover generates a proof to demonstrate that a public regular expression matches her input string without revealing the string itself. -Two secure-regex protocols that ensure the privacy of both the string and regular expression. The first protocol is based on the oblivious stack and reduces the complexity of the state-of-the-art from O(mn2)O(mn^2) to O(mnlogn)O(mn\log n). The second protocol relies on the oblivious transfer and performs better empirically when the size of regular expressions is smaller than 2122^{12}. We also evaluated our protocols in the context of encrypted DNS policy checking and intrusion detection and achieved 4.5X improvements over the state-of-the-art. These results also indicate the practicality of our approach in real-world applications

    Similar works