This paper presents a novel approach to assist the
user in exploring appropriate transfer functions for the
visualization of volumetric datasets. The search for a
transfer function is treated as a parameter optimization problem and addressed with stochastic search techniques. Starting from an initial population of (random or pre-defined) transfer functions, the evolution of the stochastic algorithms is controlled by either direct user selection of intermediate images or automatic fitness evaluation using user-specified objective functions. This approach essentially shields the user from the complex and tedious "trial and error" approach, and demonstrates effective and convenient generation of transfer functions.Engineering and Applied Science