On the Security of Blind Signatures in the Multi-Signer Setting

Abstract

Blind signatures were originally introduced by Chaum (CRYPTO ’82) in the context of privacy-preserving electronic payment systems. Nowadays, the cryptographic primitive has also found applications in anonymous credentials and voting systems. However, many practical blind signature schemes have only been analysed in the game-based setting where a single signer is present. This is somewhat unsatisfactory as blind signatures are intended to be deployed in a setting with many signers. We address this in the following ways: – We formalise two variants of one-more-unforgeability of blind signatures in the Multi-Signer Setting. – We show that one-more-unforgeability in the Single-Signer Setting translates straightforwardly to the Multi-Signer Setting with a reduction loss proportional to the number of signers. – We identify a class of blind signature schemes which we call Key-Convertible where this reduction loss can be traded for an increased number of signing sessions in the Single-Signer Setting and show that many practical blind signature schemes such as blind BLS, blind Schnorr, blind Okamoto-Schnorr as well as two pairing-free, ROS immune schemes by Tessaro and Zhu (Eurocrypt’22) fulfil this property. – We further describe how the notion of key substitution attacks (Menezes and Smart, DCC’04) can be translated to blind signatures and provide a generic transformation of how they can be avoided

    Similar works