Hardness of Non-Interactive Differential Privacy from One-Way Functions

Abstract

A central challenge in differential privacy is to design computationally efficient non-interactive algorithms that can answer large numbers of statistical queries on a sensitive dataset. That is, we would like to design a differentially private algorithm that takes a dataset DXnD \in X^n consisting of some small number of elements nn from some large data universe XX, and efficiently outputs a summary that allows a user to efficiently obtain an answer to any query in some large family QQ. Ignoring computational constraints, this problem can be solved even when XX and QQ are exponentially large and nn is just a small polynomial; however, all algorithms with remotely similar guarantees run in exponential time. There have been several results showing that, under the strong assumption of indistinguishability obfuscation (iO), no efficient differentially private algorithm exists when XX and QQ can be exponentially large. However, there are no strong separations between information-theoretic and computationally efficient differentially private algorithms under any standard complexity assumption. In this work we show that, if one-way functions exist, there is no general purpose differentially private algorithm that works when XX and QQ are exponentially large, and nn is an arbitrary polynomial. In fact, we show that this result holds even if XX is just subexponentially large (assuming only polynomially-hard one-way functions). This result solves an open problem posed by Vadhan in his recent survey

    Similar works