Organic Optoelectronic Devices Based on Through-Space Interaction

Abstract

Through-space interaction (TSI), including through-space conjugation (TSC) and through-space charge transfer (TSCT), has emerged as a promising strategy for designing functional materials and constructing superior optoelectronic devices. Because of the multichannel charge transport and structural flexibility, TSI-based devices often exhibit high-performance optoelectronic properties, such as excellent photoluminescence, high charge carrier mobility, and outstanding device efficiency. In this review, the principles and characteristics of TSI are briefly introduced. Then we mainly focused on the recent progress of optoelectronic device applications based on materials with TSC and TSCT. Various advanced optoelectronic devices, including organic fluorescence film sensors, organic light-emitting diodes, single-molecule junctions, and photoswitches are discussed in detail and possible breakthroughs are proposed for future molecular design and efficiency enhancement

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/10/2023