N-term Karatsuba Algorithm and its Application to Multiplier designs for Special Trinomials

Abstract

In this paper, we propose a new type of non-recursive Mastrovito multiplier for GF(2m)GF(2^m) using a nn-term Karatsuba algorithm (KA), where GF(2m)GF(2^m) is defined by an irreducible trinomial, xm+xk+1,m=nkx^m+x^k+1, m=nk. We show that such a type of trinomial combined with the nn-term KA can fully exploit the spatial correlation of entries in related Mastrovito product matrices and lead to a low complexity architecture. The optimal parameter nn is further studied. As the main contribution of this study, the lower bound of the space complexity of our proposal is about O(m22+m3/2)O(\frac{m^2}{2}+m^{3/2}). Meanwhile, the time complexity matches the best Karatsuba multiplier known to date. To the best of our knowledge, it is the first time that Karatsuba-based multiplier has reached such a space complexity bound while maintaining relatively low time delay

    Similar works