Fast Evaluation of S-boxes with Garbled Circuits

Abstract

Garbling schemes are vital primitives for privacy-preserving protocols and for secure two-party computation. This paper presents a projective garbling scheme that assigns 2n2^n values to wires in a circuit comprising XOR and unary projection gates. A generalization of FreeXOR allows the XOR of wires with 2n2^n values to be very efficient. We then analyze the performance of our scheme by evaluating substitution-permutation ciphers. Using our proposal, we measure high-speed evaluation of the ciphers with a moderately increased cost in garbling and bandwidth. Theoretical analysis suggests that for evaluating the nine examined ciphers, one can expect a 4- to 70-fold improvement in evaluation performance with, at most, a 4-fold increase in garbling cost and, at most, an 8-fold increase in communication cost compared to state-of-the-art garbling schemes. In an offline/online setting, such as secure function evaluation as a service, the circuit garbling and communication to the evaluator can proceed before the input phase. Thus our scheme offers a fast online phase. Furthermore, we present efficient computation formulas for the S-boxes of TWINE and Midori64 in Boolean circuits. To our knowledge, our formulas give the smallest number of AND gates for the S-boxes of these two ciphers

    Similar works