research

Locus-specific editing of histone modifications at endogenous enhancers using programmable TALE-LSD1 fusions

Abstract

Mammalian gene regulation is dependent on tissue-specific enhancers that can act across large distances to influence transcriptional activity1-3. Mapping experiments have identified hundreds of thousands of putative enhancers whose functionality is supported by cell type–specific chromatin signatures and striking enrichments for disease-associated sequence variants4-11. However, these studies did not address the in vivo functions of the putative elements or their chromatin states and could not determine which genes, if any, a given enhancer regulates. Here we present a strategy to investigate endogenous regulatory elements by selectively altering their chromatin state using programmable reagents. Transcription activator–like (TAL) effector repeat domains fused to the LSD1 histone demethylase efficiently remove enhancer-associated chromatin modifications from target loci, without affecting control regions. We find that inactivation of enhancer chromatin by these fusion proteins frequently causes down-regulation of proximal genes, revealing enhancer target genes. Our study demonstrates the potential of ‘epigenome editing’ tools to characterize an important class of functional genomic elements

    Similar works