Fat-1 transgenic mice, which endogenously convert n-6 PUFA to n-3 PUFA, are a useful tool in health research; however with this model timing of n-3 PUFA enrichment cannot be directly controlled. To add such capability, the novel Cre-recombinase inducible fat-1 (iFat1) transgenic mouse has been developed. The aim of this study was to characterize the utility of the iFat1 transgene as a model of Cre-inducible endogenous n-3 PUFA enrichment. Functionality of the iFat1 transgene was screened both in vitro and in vivo. In the presence of Cre, the iFat1 transgene resulted in a balancing (p < 0.01) of the n-6/n-3 PUFA ratio within phospholipids in the human embryonic kidney 293T cell line. For in vivo analysis, iFat1 transgenic mice were crossed with the R26-Cre-ERT2 (Tam-Cre) mouse line, a tamoxifen inducible Cre-expression model. Tam-Cre/iFat1 double hybrids were transiently treated with tamoxifen at 6–7 weeks, then terminated 3 weeks later. Tamoxifen treated mice had increased (p < 0.05) tissue n-3 PUFA and ≥two-fold reduction (p < 0.05) in the n-6/n-3 PUFA ratio of liver, kidney and muscle phospholipids relative to vehicle treated controls. Collectively these findings suggest that the iFat1 transgenic mouse may be a promising tool to help elucidate the temporal effects through which n-3 PUFA impacts health related outcomes