DFQIoV: Design of a Dynamic Fan-Shaped-Clustering Model for QoS-aware Routing in IoV Networks

Abstract

Internet of Vehicles (IoV) is a steadily growing field of research that deals with highly ad-hoc wireless networks. These networks require design of high-speed & high-efficiency routing models, that can be applied to dynamically changing network scenarios. Existing models that perform this task are highly complex and require larger delays for estimation of dynamic routes. While, models that have faster performance, do not consider comprehensive parameters, which limits their applicability when used for large-scale network scenarios. To overcome these limitations, this text proposes design of a novel dynamic fan-shaped clustering model for QoS-aware routing in IoV networks. The model initially collects network information sets including node positions, & energy levels, and combines them with their temporal packet delivery & throughput performance levels. These aggregated information sets are processed via a hybrid bioinspired fan shaped clustering model, that aims at optimization of routing performance via deployment of dynamic clustering process. The model performs destination-aware routing process which assists in reducing communication redundances. This is done via a combination of Elephant Herding Optimization (EHO) with Particle Swarm Optimization (PSO), which integrates continuous learning for router level operations. The integrated model is able to reduce communication delays by 5.9%, while improving energy efficiency by 8.3%, throughput by 4.5%, and packet delivery performance by 1.4% under different network scenarios. Due to which the proposed model is capable of deployment for a wide variety of dynamic network scenarios

    Similar works