TC-PTP overexpression attenuates skin cancer formation during environmental skin carcinogenesis

Abstract

Background: T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, has been shown to function as a tumor suppressor during skin carcinogenesis. Methods: we generated a novel epidermal specific TC-PTP-overexpressing (K5HA.Ptpn2) mouse model to show that TC-PTP contributes to the attenuation of chemically induced skin carcinogenesis through the synergistic regulation of STAT1, STAT3, STAT5, and PI3K/AKT signaling. Results: We found overexpression of TC-PTP increased epidermal sensitivity to DMBA-induced apoptosis and it decreased TPA-mediated hyperproliferation, coinciding with reduced epidermal thickness. Inhibition of STAT1, STAT3, STAT5 or AKT reversed the effects of TC-PTP overexpression on epidermal survival and proliferation. Mice overexpressing TC-PTP in the epidermis developed significantly reduced numbers of tumors during skin carcinogenesis and presented a prolonged latency of tumor initiation. Examination of human papilloma and squamous cell carcinomas (SCCs) revealed that TC-PTP expression was significantly reduced and TC-PTP expression was inversely correlated with the increased grade of SCCs. Conclusion: Our findings demonstrate that TC-PTP is a potential therapeutic target for the prevention of human skin cancer given that it is a major negative regulator of oncogenic signaling

    Similar works