Desphosphorization in ironmaking and oxygen steelmaking

Abstract

Steelmaking is an extensive industry based on modifying the physical properties of iron to fit a wide range of applications by either adding alloying elements or removal of impurities. Thus, the effects of various elemental components on final steel properties are at the heart of the steelmaking process whether in small concentrations coming from the raw materials or being in larger concentrations as alloying elements. Owing to increased demand of iron ore raw materials, the access to high-quality ores has been under stress and thus, increased usage of low-quality ores, which contains high concentrations of impurities such as phosphorus and sulphur has become more economical. Such impurities have been known to have adverse impacts on the final steel properties and need special management in conventional steel making operation. This report primarily focuses on the management strategies of phosphorus in steelmaking including the behavior of phosphorus and its removal strategies in several core components of the process: blast furnace (BF), basic oxygen furnace (BOF), electric arc furnace (EAF) and argon oxygen decarburization (AOD). The objective of the report is to review underlying research in the area giving a reference to the available literature and support propagation of future research projects addressing various aspects of dephosphorization in steelmaking

    Similar works