This thesis describes the synthesis and assembly of metal and semiconductor nanoparticles (NPs). The two research topics include i) hetero-assembly of metal and semiconductor NPs, ii) effect of ionic strength on homo-assembly of gold nanorods (GNRs). First, we present hetero-assembly of GNRs and semiconductor quantum dots (QDs) in a chain using biotin-streptavidin interaction. We synthesized alloyed CdTeSe QDs and modified them with mercaptoundecanoic acid to render them water-soluble and to attach streptavidin. We synthesized GNRs by a seed-mediated method and selectively modified the ends with biotin. Hetero-assembly of QDs and GNRs depended on the size, ligands, and ratio of QDs and GNRs. Second, we controlled the rate of homo-assembly of GNRs by varying the ionic strength of the DMF/water solution. The solubility of polystyrene on the ends of GNRs depended on the ionic strength of the solution, which correlated with the rate of assembly of GNRs into chains.MAS