thesis

Mobile Offloading in Residential Wireless Access Markets

Abstract

The growth of mobile data traffic has been increasing at a tremendous pace. Currently, mobile broadband is mostly served by macro base stations. Strong attenuation occurs when the signals penetrate through buildings affecting the quality of service. Hence, mobile operators need to enhance the capacity to minimise congestion problems and improve the coverage on their macro networks for better network operation. As most of the mobile traffic occurs indoors, there is a need for indoor network deployments. A qualitative analysis employing the combination of various research methods (value network configuration, system dynamics, expert interviews) has been carried out to investigate various factors besides mobile offloading, which could lead to a large-scale deployment of femtocells in homes with the focus on Finland. This study also discusses several options to cope with the mobile traffic growth and examines different indoor network deployment scenarios. Furthermore, the scenarios of Femtocell-as-a-Service are highlighted and its possible impacts on mobile operators’ business are covered as well. The analysis is also conducted to illustrate how different actors are interrelated in the home network business. The analysis reveals that the primary factor that will contribute to the success of femtocell deployment in homes is the need for future mobile offloading. However, many other factors have important implications which require careful consideration by mobile operators. With the presence of good macro network capacity like in Finland, new services and partnership with third party providers has been identified as the most important factor. Mobile operators need to offer an incentive to attract end-users to adopt a femtocell service due to the strong positioning of WiFi in homes. Therefore, new services would also enable the penetration of femtocells into homes to compete with WiFi access points. Three factors (interference mitigation and interoperability, femtocell management system, backhaul) are also important as these are needed to ensure the femtocell networks operate reliably. As lowering the cost is essential for building scale, the model of Femtocell-as-a-Service is useful as it reduces capital investments for mobile operators. Interviews with the experts found that major mobile operators are less likely to adopt this model. This is better suited for smaller mobile operators that want to quickly enter the femtocell business

    Similar works