End-of-Life Impact on the Cradle-to-Grave LCA of Light-Duty Commercial Vehicles in Europe

Abstract

A cradle-to-grave life cycle assessment focused on end-of-life (EoL) was conducted in this study for three configurations of a light-duty commercial vehicle (LDCV): diesel, compressed natural gas (CNG), and battery electric vehicle (BEV). The aim is to investigate the impact of recycling under two EoL scenarios with different allocation methods. The first is based on the traditional avoided burden method, while the second is based on the circular footprint formula (CFF) developed by the European Commission. For each configuration, a detailed multilevel waste management scheme was developed in compliance with the 2000/53/CE directive and ISO22628 standard. The results showed that the global warming potential (GWP) impact under the CFF method is significantly greater when compared to the avoided burden method because of the A-parameter, which allocates the burdens and benefits between the two connected product systems. Furthermore, in all configurations and scenarios, the benefits due to the avoided production of virgin materials compensate for the recycling burdens within GWP impact. The main drivers of GWP reduction are steel recycling for all of the considered LDCVs, platinum, palladium, and rhodium recycling for the diesel and CNG configurations, and Li-ion battery recycling for the BEV configuration. Finally, the EoL stage significantly reduces the environmental impact of those categories other than GWP

    Similar works