Allogeneic Adipose-Derived Mesenchymal Stem Cells as an Adjunct to Endovascular Treatment of Intracranial Aneurysms

Abstract

Intracranial aneurysms are a condition characterized by the weakening of blood vessels in the brain, affecting approximately 1 in 5 individuals. Rupture of these fragile blood vessels can result significant brain bleeding, also known as subarachnoid hemorrhage, leading to a stroke that can cause severe neurological deficits or death. Current treatment approaches involve either endovascular or open surgery. One of the most common treatments is endovascular surgery, a minimally invasive procedure that entails inserting a small catheter through the femoral or radial artery and navigating it to the location of the aneurysm in the brain. Depending on the anatomical features, the aneurysm sac is filled with small platinum coils, or a mesh metal stent which is placed to cover the aneurysm opening. The objective in both cases is to redirect blood flow and eliminate the risk of stroke. However, recurrent aneurysms occur in up to 30% of these procedures, necessitating multiple surgeries. Recent advancements have introduced novel endovascular devices such as bioresorbable stents to enhance the outcomes of aneurysm treatment. Additionally, allogeneic adult mesenchymal stem cells have shown promise in improving healing processes. This dissertation aims to expand our understanding of the impact of stem cells on aneurysm healing and how they can be effectively utilized to improve the outcomes of brain aneurysm treatments, including endovascular coiling and stenting

    Similar works