Investigating the protein subcomplexes from a conjugative Type IV Secretion System

Abstract

Type IV secretion system (T4SS) are versatile nanomachines that enable the efficient transport of substrates in bacteria. In general, they are formed from two major membrane embedded subassemblies: an outer membrane core complex (OMCC) and an inner membrane complex (IMC). The conjugative T4SS encoded by the F plasmid is of particular interest due to its clinical relevance as it facilitates the spread of antibiotic resistance amongst bacterial population. Despite its importance, atomic details of the F-T4SS structure and protein-protein interactions were rudimentary which in turn precludes thorough understanding of how conjugation is orchestrated. Therefore, this thesis aimed to improve knowledge on the F-T4SS by studying the structure of the F-OMCC and investigating other proteins the complex may interact with. After optimising the detergent solubilisation of the F-OMCC expressed from the pED208 F-like plasmid, and improving the purification of the complex, a cryo-EM dataset was collected. Using single particle analysis, the structure was solved with an overall resolution of 3.3 Å. The F-OMCC is formed from two concentric rings which have two distinct symmetries. The outer ring adopts 13-fold symmetry whereas the inner ring showed 17-fold symmetry, together they form a 2.1 MDa complex. The atomic models of TraB, TraK and TraV were built into the structure, and they revealed a unique stoichiometric arrangement. Interestingly, TraV and TraK proteins were found to adopt two different conformations within the outer ring. TraV and TraB were found to accommodate the symmetry mismatch by existing in both F-OMCC rings, and also appeared to confer flexibility. This makes the F-OMCC a dynamic complex which is likely to have important implications in the pilus and T4SS activity during conjugation. The interactions between the F-OMCC and other Tra/Trb proteins were also investigated to decipher how the concerted dynamics of the pilus may be connected to the complex. A potential interaction between F-OMCC and the proteins TraH and TraN was observed by pull-down assays. Furthermore, initial work on TraG found that it seems to assemble as a high order oligomer in solution. The results are reminiscent of a hexameric protein which may be functionally important. Together, the findings of this thesis reveal novel insights into the F-T4SS and its subassemblies. The approach used to purify the F-OMCC and study the interactions will act as the basis of future work on the F-T4SS and is directly applicable to the other protein complexes within the conjugative nanomachine.Open Acces

    Similar works