Insights into temperature controls on rockfall occurrence and cliff erosion

Abstract

A variety of environmental triggers have been associated with the occurrence of rockfalls however their role and relative significance remains poorly constrained. This is in part due to the lack of concurrent data on rockfall occurrence and cliff face conditions at temporal resolutions that mirror the variability of environmental conditions, and over durations for large enough numbers of rockfall events to be captured. The aim of this thesis is to fill this data gap, and then to specifically focus on the role of temperature in triggering rockfall that this data illuminates. To achieve this, a long-term multiannual 3D rockfall dataset and contemporaneous Infrared Thermography (IRT) monitoring of cliff surface temperatures has been generated. The approaches used in this thesis are undertaken at East Cliff, Whitby, which is a coastal cliff located in North Yorkshire, UK. The monitored section is ~ 200 m wide and ~65 m high, with a total cliff face area of ~9,592 m². A method for the automated quantification of rockfall volumes is used to explore data collected between 2017–2019 and 2021, with the resulting inventory including > 8,300 rockfalls from 2017–2019 and > 4,100 rockfalls in 2021, totalling > 12,400 number of rockfalls. The analysis of the inventory demonstrates that during dry conditions, increases in rockfall frequency are coincident with diurnal surface temperature fluctuations, notably at sunrise, noon and sunset in all seasons, leading to a marked diurnal pattern of rockfall. Statistically significant relationships are observed to link cliff temperature and rockfall, highlighting the response of rock slopes to absolute temperatures and changes in temperature. This research also shows that inclement weather constitutes the dominant control over the annual production of rockfalls but also quantifies the period when temperature controls are dominant. Temperature-controlled rockfall activity is shown to have an important erosional role, particularly in periods of iterative erosion dominated by small size rockfalls. As such, this thesis provides for the first high-resolution evidence of temperature controls on rockfall activity, cliff erosion and landform development

    Similar works