CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
System-driven design and integration of low-carbon domestic heating technologies
Authors
M Aunedi
CN Markides
+3 more
AV Olympios
AM Pantaleo
G Strbac
Publication date
7 September 2023
Publisher
Elsevier
Doi
Abstract
Data availability: Data will be made available on request.A shorter version of this work has been presented during the 17th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) held in Paphos, Cyprus, 6–10 November 2022.Copyright © 2023 The Authors. This research explores various combinations of electric heat pumps (EHPs), hydrogen boilers (HBs), electric boilers (EBs), hydrogen absorption heat pumps (AHPs) and thermal energy storage (TES) to assess their potential for delivering cost-efficient low-carbon heat supply. The proposed technology-to-systems approach is based on comprehensive thermodynamic and component-costing models of various heating technologies, which are integrated into a whole-energy system optimisation model to determine cost-effective configurations of heating systems that minimise the overall cost for both the system and the end-user. Case studies presented in the study focus on two archetypal systems: (i) the North system, which is characterised by colder climate conditions and abundant wind resource; and (ii) the South system, which is characterised by a milder climate and higher solar energy potential. The results indicate a preference for a portfolio of low-carbon heating technologies including EHPs, EBs and HBs, coupled with a sizable amount of TES, while AHPs are not chosen, since, for the investigated conditions, their efficiency does not outweigh the high investment cost. Capacities of heat technologies are found to vary significantly depending on system properties such as the volume and diversity of heat demand and the availability profiles of renewable generation. The bulk of heat (83–97%) is delivered through EHPs, while the remainder is supplied by a mix of EBs and HBs. The results also suggest a strong impact of heat demand diversity on the cost-efficient mix of heating technologies, with higher diversity penalizing EHP relatively more than other, less capital-intensive heating options.UK Engineering and Physical Sciences Research Council (EPSRC) grant number EP/R045518/1 (IDLES Programme)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Brunel University Research Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:bura.brunel.ac.uk:2438/274...
Last time updated on 06/11/2023