Automatic identification of the number of clusters in hierarchical clustering

Abstract

Hierarchical clustering is one of the most suitable tools to discover the underlying true structure of a dataset in the case of unsupervised learning where the ground truth is unknown and classical machine learning classifiers are not suitable. In many real applications, it provides a perspective on inner data structure and is preferred to partitional methods. However, determining the resulting number of clusters in hierarchical clustering requires human expertise to deduce this from the dendrogram and this represents a major challenge in making a fully automatic system such as the ones required for decision support in Industry 4.0. This research proposes a general criterion to perform the cut of a dendrogram automatically, by comparing six original criteria based on the Calinski-Harabasz index. The performance of each criterion on 95 real-life dendrograms of different topologies is evaluated against the number of classes proposed by the experts and a winner criterion is determined. This research is framed in a bigger project to build an Intelligent Decision Support system to assess the performance of 3D printers based on sensor data in real-time, although the proposed criteria can be used in other real applications of hierarchical clustering.The methodology is applied to a real-life dataset from the 3D printers and the huge reduction in CPU time is also shown by comparing the CPU time before and after this modification of the entire clustering method. It also reduces the dependability on human-expert to provide the number of clusters by inspecting the dendrogram. Further, such a process allows applying hierarchical clustering in an automatic mode in real-life industrial applications and allows the continuous monitoring of real 3D printers in production, and helps in building an Intelligent Decision Support System to detect operational modes, anomalies, and other behavioral patterns.Peer ReviewedPostprint (author's final draft

    Similar works