Phylogenetic and non-phylogenetic structure in trophic links between gall-forming herbivores and their parasitoid natural enemies.

Abstract

Revealing processes that structure species interactions is central to understanding community assembly and dynamics. Species interact via their phenotypes, but identifying and quantifying the traits that structure species-specific interactions (links) can be challenging. Where these traits show phylogenetic signal, however, link properties are predictable using models that incorporate phylogenies in place of trait data. We analysed variation in link richness, frequency, and identity in a multi-site dataset of interactions between host oak cynipid galls and parasitoid natural enemies, using a Bayesian mixed modelling framework allowing concurrent fitting of terms for phylogenies of both trophic levels. In both link incidence (presence/absence) and link frequency datasets, we identified strong signatures of cophylogeny (related parasitoids attack related host galls) and patterns independent of either phylogeny. Our results are robust to simulations of substantially reduced sample completeness, and are consistent with the structuring of trophic interactions by a combination of phylogenetically conserved and convergently evolving traits at both trophic levels. We discuss our results in light of phenotypic traits thought to structure gall-parasitoid interactions and wider applications of this approach, including inference of underlying community assembly processes and prediction of economically important trophic interactions

    Similar works