The added value of spinal cord lesions to disability accrual in multiple sclerosis

Abstract

Spinal cord MRI is not routinely performed for multiple sclerosis (MS) monitoring. Here, we explored whether spinal cord MRI activity offers any added value over brain MRI activity for clinical outcomes prediction in MS. This is a retrospective, monocentric study including 830 MS patients who underwent longitudinal brain and spinal cord MRI [median follow-up 7 years (range: < 1–26)]. According to the presence (or absence) of MRI activity defined as at least one new T2 lesion and/or gadolinium (Gd) enhancing lesion, each scan was classified as: (i) brain MRI negative/spinal cord MRI negative; (ii) brain MRI positive/spinal cord MRI negative; (iii) brain MRI negative/spinal cord MRI positive; (iv) brain MRI positive/spinal cord MRI positive. The relationship between such patterns and clinical outcomes was explored by multivariable regression models. When compared with the presence of brain MRI activity alone: (i) Gd + lesions in the spine alone and both in the brain and in the spinal cord were associated with an increased risk of concomitant relapses (OR = 4.1, 95% CI 2.4–7.1, p < 0.001 and OR = 4.9, 95% CI 4.6–9.1, p < 0.001, respectively); (ii) new T2 lesions at both locations were associated with an increased risk of disability worsening (HR = 1.4, 95% CI = 1.0–2.1, p = 0.05). Beyond the presence of brain MRI activity, new spinal cord lesions are associated with increased risk of both relapses and disability worsening. In addition, 16.1% of patients presented asymptomatic, isolated spinal cord activity (Gd + lesions). Monitoring MS with spinal cord MRI may allow a more accurate risk stratification and treatment optimization

    Similar works