Visual information processing through the interplay between fine and coarse signal pathways

Abstract

Object recognition is often viewed as a feedforward, bottom-up process in machine learning, but in real neural systems, object recognition is a complicated process which involves the interplay between two signal pathways. One is the parvocellular pathway (P-pathway), which is slow and extracts fine features of objects; the other is the magnocellular pathway (M-pathway), which is fast and extracts coarse features of objects. It has been suggested that the interplay between the two pathways endows the neural system with the capacity of processing visual information rapidly, adaptively, and robustly. However, the underlying computational mechanism remains largely unknown. In this study, we build a two-pathway model to elucidate the computational properties associated with the interactions between two visual pathways. Specifically, we model two visual pathways using two convolution neural networks: one mimics the P-pathway, referred to as FineNet, which is deep, has small-size kernels, and receives detailed visual inputs; the other mimics the M-pathway, referred to as CoarseNet, which is shallow, has large-size kernels, and receives blurred visual inputs. We show that CoarseNet can learn from FineNet through imitation to improve its performance, FineNet can benefit from the feedback of CoarseNet to improve its robustness to noise; and the two pathways interact with each other to achieve rough-to-fine information processing. Using visual backward masking as an example, we further demonstrate that our model can explain visual cognitive behaviors that involve the interplay between two pathways. We hope that this study gives us insight into understanding the interaction principles between two visual pathways

    Similar works