Wild micromammal host spectrum of zoonotic eukaryotic parasites in Spain. Occurrence and genetic characterisation

Abstract

Micromammals have historically been recognized as highly contentious species in terms of the maintenance and transmission of zoonotic pathogens to humans. Limited information is currently available on the epidemiology and potential public health significance of intestinal eukaryotes in wild micromammals. We examined 490 faecal samples, grouped into 155 pools, obtained from 11 micromammal species captured in 11 Spanish provinces for the presence of DNA from Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and Blastocystis sp. The presence of Leishmania spp. was investigated in individual spleen samples. All micromammal species investigated harboured infections by at least one eukaryotic parasite, except Apodemus flavicollis, Myodes glareolus, Sorex coronatus and Sciurus vulgaris, but the sample size for these host species was very low. Cryptosporidium spp. was the most prevalent species found (3.7%, 95% confidence interval [CI]: 2.2–5.7), followed by G. duodenalis (2.8%, 95% CI: 1.6–4.6) and E. bieneusi (2.6%, 95% CI: 1.4–4.3). All pooled faecal samples tested negative for Blastocystis sp. Leishmania infantum was identified in 0.41% (95% CI: 0.05–1.46) of the 490 individual spleen samples analysed. Sequence analyses allowed the identification of Cryptosporidium andersoni (5.9%), C. ditrichi (11.7%), C. muris (5.9%), C. parvum (5.9%), C. tyzzeri (5.9%), rat genotypes CR97 (5.9%) and W19 (5.9%), vole genotypes V (11.7%) and VII (5.9%) and Cryptosproridium spp. (35.3%) within Cryptosporidium (n = 17). Known genotypes C (66.7%) and Peru11 (25.0%) and a novel genotype (named MouseSpEb1, 8.3%) were detected within E. bieneusi (n = 12). None of the G. duodenalis-positive samples could be genotyped at the assemblage level. Molecular data indicate that wild micromammals were primarily infected by rodent-adapted species/genotypes of eukaryotic pathogens and thereby have a limited role as a source of human infections. The presence of ruminant-adapted species C. andersoni along with finding C. parvum is indicative of an overlap between domestic/peri-domestic and sylvatic transmission cycles of these agents.This work was supported by the Spanish Ministry for Science and Innovation under projects CGL2011-30274 and CGL2015-71255-P and by the BBVA Foundation under project TOPIGEPLA (2014 call). Additional funding was obtained from the Spanish Ministry for Science and Innovation under projects CGL2017-89866-R and E-RTA-2015-0002-C02-02 and by the Health Institute Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness under project PI19CIII/00029. David González-Barrio is the recipient of a Sara Borrell Research Contract (CD19CIII/00011) funded by the Spanish Ministry of Science, Innovation and Universities. Alejandro Dashti is the recipient of a PFIS contract (FI20CIII/00002) funded by the Spanish Ministry of Science and Innovation and Universities. The ‘Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat’ (GREFA) provided partial funding and invaluable logistic and workforce support for samplings in NW Spain, along with many students and staff from the Autonomous University of Madrid (UAM).Peer reviewe

    Similar works