Abstract

To test whether quantitative flow ratio (QFR)-based trans-stent gradient (TSG) is associated with adverse clinical events at follow-up. A post-hoc analysis of the multi-center HAWKEYE study was performed. Vessels post-PCI were divided into four groups (G) as follows: G1: QFR >= 0.90 TSG = 0 (n = 412, 54.8%); G2: QFR >= 0.90, TSG > 0 (n = 216, 28.7%); G3: QFR < 0.90, TSG = 0 (n = 37, 4.9%); G4: QFR < 0.90, TSG > 0 (n = 86, 11.4%). Cox proportional hazards regression model was used to analyze the effect of baseline and prognostic variables. The final reduced model was obtained by backward stepwise variable selection. Receiver operating characteristic (ROC) was plotted and area under the curve (AUC) was calculated and reported. Overall, 449 (59.8%) vessels had a TSG = 0 whereas (40.2%) had TSG > 0. Ten (2.2%) vessel-oriented composite endpoint (VOCE) occurred in vessels with TSG = 0, compared with 43 (14%) in vessels with TSG > 0 (p < 0.01). ROC analysis showed an AUC of 0.74 (95% CI: 0.67 to 0.80; p < 0.001). TSG > 0 was an independent predictor of the VOCE (HR 2.95 [95% CI 1.77-4.91]). The combination of higher TSG and lower final QFR (G4) showed the worst long-term outcome while low TSG and high QFR showed the best outcome (G1) while either high TSG or low QFR (G2, G3) showed intermediate and comparable outcomes. Higher trans-stent gradient was an independent predictor of adverse events and identified a subgroup of patients at higher risk for poor outcomes even when vessel QFR was optimal (> 0.90)

    Similar works