Order-picking workstations for automated warehouses

Abstract

The FALCON (Flexible Automated Logistic CONcept) project aims at the development of a new generation of warehouses and distribution centers with a maximum degree of automation. As part of the FALCON project, this dissertation addresses the design and analysis of (automated) workstations in warehouses with an end-of-aisle order-picking system (OPS). Methods are proposed for architecting, quantifying performance, and controlling such a system. Four main topics are discussed in this dissertation. First, a modular architecture for an end-of-aisle OPS with remotely located workstations is presented. This architecture is structured into areas and operational layers. A hierarchical decentralized control structure is applied. A case of an industrial-scale distribution center is presented to demonstrate the applicability of the proposed architecture for performance analysis using the process algebra-based simulation language χ\chi (Chi). Additionally, it is demonstrated how the architecture allows straightforward modification of the systems configurations, design parameters, and control heuristics. Second, a method to quantify the operational performance of order-picking workstations has been developed. The method is based on an aggregate modeling representation of the workstation using the EPT (Effective Process Time) concept. A workstation is considered in which a human picker is present to process one customer order at a time while products for multiple orders arrive simultaneously at the workstation. The EPT parameters are calculated from arrival and departure times of products using a sample path equation. Two model variants have been developed, namely for workstations with FCFS (First-Come-First-Serve) and for workstations with non-FCFS processing of products and orders. Both models have been validated using data from a real, operating workstation. The results show that the proposed aggregate modeling methodology gives good accuracy in predicting product and order flow time distributions. Third, the dissertation studies the design and control of an automated, remotely located order-picking workstation that is capable of processing multiple orders simultaneously. Products for multiple orders typically arrive out-of-sequence at the workstation as they are retrieved from dispersed locations in the storage area. The design problem concerns the structuring of product/order buffer lanes and the development of a mechanism that overcomes out-of-sequence arrivals of products. The control problem concerns the picking sequence at the workstation, as throughput deteriorates when a poor picking sequence is applied. An efficient control policy has been developed. Its performance is compared to a number of other picking policies including nearest-to-the-head, nearest neighbor, and dynamic programming. Subsequently, the resulting throughput and queue length distribution are evaluated under different settings. Insights for design considerations of such a system are summarized. Finally, the dissertation reflects on the findings from the proposed methods and uses them to come up with comprehensive design principles of end-of-aisle OPS with remotely located workstations. The various issues influencing the performance of such a system are highlighted. Moreover, the contribution of each proposed method with regards to these issues is delineated

    Similar works