Fluctuations in depth and associated primes of powers of ideals

Abstract

We count the numbers of associated primes of powers of ideals as defined by Bandari, Hibi, and Herzog in 2014. We generalize those ideals to monomial ideals BHH(m,r,s)\operatorname{BHH}(m,r,s) for r2r \ge 2, mm, s1s \ge 1; we establish partially the associated primes of powers of these ideals, and we establish completely the depth function of quotients by powers of these ideals: the depth function is periodic of period rr repeated mm times on the initial interval before settling to a constant value. The number of needed variables for these depth functions are lower than those from general constructions by H\`{a}, Nguyen, Trung, and Trung (2021)

    Similar works

    Full text

    thumbnail-image

    Available Versions