Closed-Loop Recyclable Poly(imine-acetal)s with Dual-Cleavable Bonds for Primary Building Block Recovery

Abstract

Chemical recycling offers a promising solution for the end-of-life treatment of synthetic polymers. However, the efficient recovery of well-defined recycled building blocks continues to be a major challenge, especially for crosslinked thermosets. Here, we developed vanillin-based polymer networks functionalized with dual-cleavable imine and acetal bonds that facilitate chemical recycling to primary building blocks and their convenient separation at the molecular level. A library of crosslinked poly(imine-acetal)s was synthesized by combining the in-bulk synthesized liquid di-vanillin acetal monomer (DVA) with commercially available liquid di- and triamines under solvent-free conditions. These thermosets showed tailor-made thermal and mechanical properties along with outstanding chemical recyclability. Under aqueous acidic conditions, poly(imine-acetal)s selectively and completely disintegrate into small molecules. During the polymer design stage, these compounds were carefully selected to enable facile separation without tedious techniques. As a result, the primary building blocks were isolated in high yields and purity and immediately reused to produce fresh polymers with identical thermomechanical properties. Since our "design for recycling" concept aims at obtaining the primary building blocks rather than monomers after depolymerization, a plethora of possibilities are unlocked to utilize these chemical resources, including closed-loop recycling as portrayed

    Similar works