Robust adaptive beamforming (RAB) based on interference-plus-noise covariance
(INC) matrix reconstruction can experience performance degradation when model
mismatch errors exist, particularly when the input signal-to-noise ratio (SNR)
is large. In this work, we devise an efficient RAB technique for dealing with
covariance matrix reconstruction issues. The proposed method involves INC
matrix reconstruction using an idea in which the power and the steering vector
of the interferences are estimated based on the power method. Furthermore,
spatial match processing is computed to reconstruct the desired
signal-plus-noise covariance matrix. Then, the noise components are excluded to
retain the desired signal (DS) covariance matrix. A key feature of the proposed
technique is to avoid eigenvalue decomposition of the INC matrix to obtain the
dominant power of the interference-plus-noise region. Moreover, the INC
reconstruction is carried out according to the definition of the theoretical
INC matrix. Simulation results are shown and discussed to verify the
effectiveness of the proposed method against existing approaches.Comment: 7 pages, 2 figure