Stochastic resonance in soft-glassy materials

Abstract

Flow in soft-glasses occurs via a sequence of reversible elastic deformations and local irreversible plastic rearrangements. Yield events in the material cause kicks adding up to an effectively thermal noise, an intuition that has inspired the development of phenomenological models aiming at explaining the main features of soft-glassy rheology. In this letter, we provide a specific scenario for such mechanical activation, based on a general paradigm of non-equilibrium statistical mechanics, namely {\it stochastic resonance}. By using mesoscopic simulations of emulsion droplets subject to an oscillatory strain, we characterize the response of the system and highlight a resonance-like behavior in the plastic rearrangements. This confirms that the synchronization of the system response to an external time-dependent load is triggered by the mechanical noise resulting from disordered configurations (polydispersity)

    Similar works