Detection limitation of high frequency signal travelling along underground power cable

Abstract

The detection of the high frequency signal propagating along underground power cables is part of many monitoring techniques, e.g. partial discharge (PD) based diagnostics. On one hand, higher frequency corresponds to better spatial resolution, which means more accurate PD location. On the other hand, signal attenuation increases with frequency. Apart from the signal itself, noise level and detection equipment also play a role in the signal detection process. This paper focuses on the detection limitation of high frequency components in PD signals travelling along an underground power cable considering effects of signal attenuation, noise level and applied equipment. The attenuation coefficient is based on measurements from 10kV three-core XLPE cables. Though the attenuation coefficients for other types of cables differ, the measured value for this particular cable provides a practical parameter value, and it can be altered to match other cable types. The detected analog signal is digitized through an analog-to-digital converter (ADC) and may be averaged before being digitally stored. In addition, an amplifier and/or filter can be applied before the analog to digital (AD) conversion. The vertical resolution and the vertical sensitivity of the ADC are crucial for signal detection. Effect of noise is considered in this paper by analyzing Gaussian noise and typical noise characteristics obtained from field measured. Sinusoidal wave and Gaussian pulse shapes are applied as input signals for the cable. Firstly, the relationship between maximum cable length and detectable frequency components for a specific set of detection equipment conditions is analyzed without averaging. This is the limitation from ADC. Secondly, the merits and limits of averaging are studied. The required averaging time for different frequencies as a function of PD signal propagation length is studied. Finally, the effect of averaging and analog filtering is demonstrated with test measurements

    Similar works