Urban air pollution modelling with machine learning using fixed and mobile sensors

Abstract

Detailed air quality (AQ) information is crucial for sustainable urban management, and many regions in the world have built static AQ monitoring networks to provide AQ information. However, they can only monitor the region-level AQ conditions or sparse point-based air pollutant measurements, but cannot capture the urban dynamics with high-resolution spatio-temporal variations over the region. Without pollution details, citizens will not be able to make fully informed decisions when choosing their everyday outdoor routes or activities, and policy-makers can only make macroscopic regulating decisions on controlling pollution triggering factors and emission sources. An increasing research effort has been paid on mobile and ubiquitous sampling campaigns as they are deemed the more economically and operationally feasible methods to collect urban AQ data with high spatio-temporal resolution. The current research proposes a Machine Learning based AQ Inference (Deep AQ) framework from data-driven perspective, consisting of data pre-processing, feature extraction and transformation, and pixelwise (grid-level) AQ inference. The Deep AQ framework is adaptable to integrate AQ measurements from the fixed monitoring sites (temporally dense but spatially sparse), and mobile low-cost sensors (temporally sparse but spatially dense). While instantaneous pollutant concentration varies in the micro-environment, this research samples representative values in each grid-cell-unit and achieves AQ inference at 1 km \times 1 km pixelwise scale. This research explores the predictive power of the Deep AQ framework based on samples from only 40 fixed monitoring sites in Chengdu, China (4,900 {\mathrm{km}}^\mathrm{2}, 26 April - 12 June 2019) and collaborative sampling from 28 fixed monitoring sites and 15 low-cost sensors equipped with taxis deployed in Beijing, China (3,025 {\mathrm{km}}^\mathrm{2}, 19 June - 16 July 2018). The proposed Deep AQ framework is capable of producing high-resolution (1 km \times 1 km, hourly) pixelwise AQ inference based on multi-source AQ samples (fixed or mobile) and urban features (land use, population, traffic, and meteorological information, etc.). This research has achieved high-resolution (1 km \times 1 km, hourly) AQ inference (Chengdu: less than 1% spatio-temporal coverage; Beijing: less than 5% spatio-temporal coverage) with reasonable and satisfactory accuracy by the proposed methods in urban cases (Chengdu: SMAPE \mathrm{<} 20%; Beijing: SMAPE \mathrm{<} 15%). Detailed outcomes and main conclusions are provided in this thesis on the aspects of fixed and mobile sensing, spatio-temporal coverage and density, and the relative importance of urban features. Outcomes from this research facilitate to provide a scientific and detailed health impact assessment framework for exposure analysis and inform policy-makers with data driven evidence for sustainable urban management.Open Acces

    Similar works