On a power-type coupled system of Monge-Ampère equations

Abstract

We study an elliptic system coupled by Monge--Amp\`{e}re equations:{     detD2u1=(u2)αamp;in  Ω,     detD2u2=(u1)βamp;in Ω,     u1lt;0, u2lt;0amp;in  Ω,    u1=u2=0amp;on Ω,  \begin{cases}      \det D^{2}u_{1}={(-u_{2})}^\alpha & \hbox{in  $\Omega,$} \\      \det D^{2}u_{2}={(-u_{1})}^\beta & \hbox{in $\Omega,$} \\      u_{1}<0,\ u_{2}<0& \hbox{in  $\Omega,$}\\     u_{1}=u_{2}=0 & \hbox{on $ \partial \Omega,$}   \end{cases}%here Ω\Omega~is a smooth, bounded and strictly convex domainin~RN\mathbb{R}^{N}, N2N\geq2, \alpha >0, \beta >0. When Ω\Omega isthe unit ball in RN\mathbb{R}^{N}, we use index theory of fixedpoints for completely continuous operators to get existence, uniqueness results and nonexistence of radial convex solutions undersome corresponding assumptions on α\alpha, β\beta. When \alpha>0,\beta>0 and αβ=N2\alpha\beta=N^2  we also study a~corresponding eigenvalue problem in more general domains

    Similar works