Quantum vacuum effects in non-relativistic quantum field theory

Abstract

Nonlinearities in the dispersion relations associated with different interactions designs, boundary conditions and the existence of a physical cut-off scale can alter the quantum vacuum energy of a nonrelativistic system nontrivially. As a material realization of this, we consider a 1D-periodic rotating, interacting non-relativistic setup. The quantum vacuum energy of such a system is expected to comprise two contributions: a fluctuation-induced quantum contribution and a repulsive centrifugal-like term. We analyze the problem in detail within a complex Schoedinger quantum field theory with a quartic interaction potential and perform the calculations non-perturbatively in the interaction strength by exploiting the nonlinear structure of the associated nonlinear Schroedinger equation. Calculations are done in both zeta-regularization, as well as by introducing a cut-off scale. We find a generic, regularization-independent behavior, where the competition between the interaction and rotation can be balanced at some critical ring-size, where the quantum vacuum energy has a maxima and the force changes sign. The inclusion of a cut-off smoothes out the vacuum energy at small distance but leaves unaltered the long distance behavior. We discuss how this behavior can be tested with ultracold-atoms.Comment: 10 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions