Particle-hole asymmetric ferromagnetism and spin textures in the triangular Hubbard-Hofstadter model

Abstract

In a lattice model subject to a perpendicular magnetic field, when the lattice constant is comparable to the magnetic length, one enters the "Hofstadter regime," where continuum Landau levels become fractal magnetic Bloch bands. Strong mixing between bands alters the nature of the resulting quantum phases compared to the continuum limit; lattice potential, magnetic field, and Coulomb interaction must be treated on equal footing. Using determinant quantum Monte Carlo (DQMC) and density matrix renormalization group (DMRG) techniques, we study this regime numerically in the context of the Hubbard-Hofstadter model on a triangular lattice. In the field-filling phase diagram, we find a broad wedge-shaped region of ferromagnetic ground states for filling factor ν≲1\nu \lesssim 1, bounded by incompressible states at filling factor ν=1\nu = 1. For magnetic field strengths Φ/Φ0≲0.4\Phi/\Phi_0 \lesssim 0.4, we observe signatures of SU(2) quantum Hall ferromagnetism in the lowest magnetic Bloch band; however, we find no numerical evidence for conventional quantum Hall skyrmions. At large fields Φ/Φ0≳0.4\Phi/\Phi_0 \gtrsim 0.4, above the ferromagnetic wedge, we observe a low-spin metallic region with spin correlations peaked at small momenta. We argue that the phenomenology of this region likely results from exchange interaction mixing fractal Hofstadter subbands. The phase diagram derived beyond the continuum limit points to a rich landscape to explore interaction effects in magnetic Bloch bands.Comment: 15 pages, 15 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions